
Error Analysis in
the TREACLE project

Mick O'Donnell, Susana Murcia,
Rebeca Garcia

Universidad Autónoma de Madrid

Contents

1. The Treacle Project

2. Role of Error Analysis in TREACLE

3. Software for Error Analysis: UAM
CorpusTool

4. Our Basic Principles for Error Analysis

5. The Scheme

6. Inter-Coder Reliability Study

7. Early Results & Applications to Teaching

1. The TREACLE Project

• A cooperation between Universidad Autonoma de
Madrid and University Politecnica de Valencia (Penny
McDonald, Keith Stuart, Maria Boquera)

• Funded by Ministerio de Ciencia e Innovación 2010-
2012 (FFI2009-14436/FILO)

• Goals:

• To map at what proficiency level each grammatical
structure is best taught in a Spanish context.

• Adjust the grammar teaching syllabus at our universities
in line with these results.

• Use the error corpus as a resource for teaching
examples and online exercises.

• Automatic proficiency assessment based on structures
and errors in student texts.

1.1 The Corpus

• The project involves two corpora:

The WriCLE corpus (UAM) - Written Corpus of
Learner English. 700,000 words, written by
Spanish learners of English at University level.
Rollinson and Mendikoetxea (2009).

The UPV Learner Corpus (UPV) containing
150,000 words of shorter texts by ESP
students.

• ONLY A 18,000 word subcorpus error annotated so
far (28 texts)

2. Role of Error Analysis in the Project

• Error analysis is one way to explore the
grammatical competence of students at each level
(e.g. Dagneaux et al 1998).

• However, some students make few errors, because
they avoid structures they are not sure about

• More adventurous students take risks and thus
make more errors.

• We thus take a two-pronged approach:

• Automatic syntactic tagging of corpus to see
what structures students are attempting;

• Manual error analysis to see what they do wrong.

• Only both together give the full picture.

3. Software for Error Analysis

• We use (and develop) UAM CorpusTool, software
for text annotation

• Multi-layer annotation of a corpus (e.g., we use 3
layers: Document, Grammar, and Error)

• User provides annotation schemes (tags organised
into a tag heirarchy) using graphical editor.

• Some schemes built in and optionally available
(Error, English Syntax, Appraisal Analysis)

3. Software for Error Analysis

• Tool provides cross-level search facilities

• Tool provides statistical reports (compare two
subsets etc.)

• Available for free (Mac, PC) from:

http://www.wagsoft.com/CorpusTool/

3. Project Win

3. Software for Error Analysis

- allows overlapping and embedded error
segments

• - allows error layer AND layers of other kinds
(e.g.,

• we have a layer for DOCUMENT and a layer for
syntax)

3. Software for Error Analysis

• Slide of error scheme. Make point that
coding criteria recorded here as well.

3. Coding window

- allows overlapping and embedded error
segments

• - allows error layer AND layers of other kinds
(e.g.,

• we have a layer for DOCUMENT and a layer for
syntax)

3. Syntactic analysis

3.5 Data Representation

• XML - machine readable by other projects

• STANDOFF ANNOTATION: allows multiple annotation
layers for each text file.

<document>

 <header><textfile>Files/A101-3.txt</textfile></header>
 <segments>
 <segment id="44" start="11" end="16"
 features="error;lexical-error;spelling-error"
 state="active" correction="Mayor" />
 <segment id="45" start="77" end="86"
 features="error;lexical-error;spelling-error"
 state="active" correction="vehicles" />

• Beginning and end of all errors is recorded (Leuven
aproach just records start in general)

4. Basic Principles of Error Coding in Treacle

Basic PHILOSOPHY
• The primary criteria behind the error scheme is to

allow errors to be related to the English grammar
teaching syllabus (Quirk and Greenbaum model
assumed)

• We are thus not interested in lexically organized
"dictionaries of errors”
• Rather, we focus on the grammatical topic in which

the error would be taught.
• We also avoid connecting errors to word classes

(e.g. adverb error)
• Rather, we associate them to the grammatical unit

which provides the context for the error (phrase or
clause)

• E.g., “He runs quick” is not an adverb error, but rather an
error at clause level (innapropriate Adjunct filler).

4. Basic Principles of Error Coding in Treacle

• Code the text vs. code the correction: In coding errors,
we can code in respect to:
• what the learner actually writes, or
• what the corrected text should be.

• For instance, if a learner writes
a woman beautiful

…is this a noun premodifier problem? (what should
have been a premodifier was placed after the noun)
Or a postmodifier problem? (incorrect type for a
postmodifier)

• In general, we follow the principle: if there is a conflict,
we code in relation to what the learner has written, not
to what they should have written.

• Rationale: there are various possible corrections to some
errors, and if we code to the corrected text, the coder’s
choice of correction determines the error category.

4. Basic Principles of Error Coding in Treacle

• When segmenting errors, we use minimal
segmentation – only select as much as you need to
make the correction, with the exception that you
should never select parts of words.

• We don’t need to identify whole syntactic units,
because the automatic syntactic analysis identifies
clause and phrase boundaries.

• Examples:
• in the other hand
• These person
• They advocate immigration fully

4. Basic Principles of Error Coding in Treacle

The Coding Criteria Document
• We maintain a coding criteria document recording

all decisions we reach in coding, organised to
follow the structure of the coding scheme (20
pages at present)

• Coding criteria are also recorded in the coding
scheme so that criteria are visible as one tags
errors.

Root

Grammar-error

Grammar-error

Grammar-error

• We have tried as far as possible to make the coding
criteria clear and unambiguous.

• These criteria are available in a 20 page coding
criteria document, and also within the coding program
itself.

• However, to test how reliably different coders
replicate the same results, 7 of us coded 6 new texts
(2500 words) for errors, with no discussion between
us.

• Around 500 errors in this corpus.

6. Ensuring Inter-Coder Reliability

• Software was written to compare a set of error-coded
texts, and produce a “consensus coding”.

• Only includes segments identified by at least 50% of
the participants (based on segment bounds only)

• Takes the most common features assigned to each
segment.

6. Ensuring Inter-Coder Reliability

6. Ensuring Inter-Coder Reliability

! "#$%! &'(()! *+,-(-! .'#/0! 1#(20-!
!""#"$%"&'#()*$&+% ,-.% ,-/% 00-% -12% 0/-%
3&(4&)5$%6"&$&)5%*)%'#)$&)$7$%
"&(8"+9&$$%#:%'#+*)(% 1;2% -/;% -<<% <=.% <;1%

>#:%'#)$&)$7$%$&(4&)5$%% =<>% =->% ./>% 01>% ,.>%
3&(4&)5$%'#+&+%*+&)5*'899?%5#%
'#)$&)$7$% <;,% <=/% 1<=% <</% <1,%

>#:%'#)$&)$7$%$&(4&)5$%% 0/>% 02>% ;<>% -=>% ,2>%
3&(4&)5$%)#5%*)%'#)$&)7% 2;.% 211% <-<% 2-<% 112%
3&(4&)5$%*)%'#)$&)7@%A75%
'#+&+%+*::&"&)59?% 20.% 2==% 2<.% <20% 20-%

B#589%+*::&"&)5%:"#4%'#)$&)$7$%% 1-=% 1<2% 1;2% 1,=% -.,%
>%#:%5C&*"%$&(4&)5$% 01>% ,.>% ,0>% =1>% =<>%

%

• The Consensus included 453 errors

6. Ensuring Inter-Coder Reliability

• The Inter-Coder Reliability software produces a
document showing each segment identified and how
people coded it.

6. Ensuring Inter-Coder Reliability

Some Comments:

• The levels of agreement are lower than desired.
• However, this was just the first of a planned cycle of three

such studies, with each one intended to reveal differences
in coding practices, leading to stronger agreement.

• On the basis of this first study, the coding criteria
document was revised to cover cases not covered (e.g.,
segmentation of punctuation marks)

• Also, on analysis of the “Consensus”, often we all agree on
an error, but segmented it differently, so disagreement was
not real.

• Often real ambiguity as to what the student meant, so hard
to decide:

It is shows as we can help

• Errors coded: 1842

• 28 esays coded, containing 18,400 words

• Just started… …the following results are early, so
take them with a grain of salt.

6. Some Results

• By examining the types of errors made at each
proficiency level, we can determine how much
teaching time to spend on each area.

7. Some Results of Our Coding

Gramm. pragmat.

% of all
errors

• Degree of teaching effort should relate to degree of
occurrence of particular errors at the level they are at.

• Looking at graphs per proficiency level provides specific
information as to what each group needs

• Use of corpus to derive exercises or examples

7. Some Results of Our Coding

• In parallel work, we are using a parsed corpus to see
which where in the proficiency scale syntactic
structures start to be used.

• We need to combine this work with the error analysis
work.

• 3 stages:
• Don’t use the structure
• Use the structure with errors
• Use the structure correctly

• We are also interested in automatically assigning
proficiency level based on the set of errors they make
(automatic classifiction using a ‘bag of words’
approach where the ‘words’ are errors)

8. Future Work

